

Pre-recorded sessions: From 4 December 2020 Live sessions: 10 - 13 December 2020

SA2020.SIGGRAPH.ORG #SIGGRAPHAsia | #SIGGRAPHAsia2020

Learning 3D Functionality Representations

Ruizhen Hu¹ Manolis Savva² Oliver van Kaick³

¹ Shenzhen University, China

- ² Simon Fraser University, Canada
- ³ Carleton University, Canada

Ruizhen Hu

Manolis Savva

Oliver van Kaick

Learning 3D Functionality Representations

- What is this course about?
 - Cover recent developments that incorporate functionality considerations into shape analysis in computer graphics
 - For the analysis of **3D objects** and **scenes**
 - Discuss work in learning 3D representations for functionality and its connections to deep learning, computer vision, and robotics
 - Course targeted at **researchers** and **students**

Learning 3D Functionality Representations

- Differences to our SIGGRAPH Asia 2016 course on *Directions in Shape Analysis towards Functionality*.
 - We provide an **organizational framework** to classify prior work
 - We connect functionality to recent works on learned 3D representations, especially to connect it to deep learning, computer vision, and robotics

- Introduction
 - Concept of functionality
 - Motivation: semantics versus functionality in shape analysis
 - Example applications
- Overview of the remaining sections of the course

• The course material is available at our course Web page:

https://learn3dfunc.github.io/

Introduction

Shape design and simulation

Furniture Design [UIM12] Motion simulation [HLK*17]

• "The particular use for which an object is designed"

-- [Merriam-Webster dictionary]

• "The application of an object in a specific context for the accomplishment of a particular purpose" [BB95]

Object recognition vs. functionality recognition

What is this?

Chair

What can we do with this?

Chair

Handcart

Drying Rack

. . .

Object recognition vs. functionality recognition

• "The essential definition of object classes is functional"

Handcart

Table

Shape analysis and semantics

Several approaches related to **shape understanding**

- Structure-aware shape processing
- Symmetry detection
- Data-driven shape analysis
- Generative models

Shape analysis and semantics

Methods covered in **previous** courses, tutorials, and STARs:

- Symmetry in 3D geometry: Extraction and applications [MPWC12]
- Structure-aware shape processing [MWZ*13]
- Data-driven shape analysis and processing [XKHK17]
- Modeling and remodeling 3D worlds [YYAZ17]
- Learning generative models of 3D structures [CXRZ19]

Shape analysis and semantics

Three general **problems** related to **functionality** analysis:

Unsupervised segmentation

Supervised segmentation

Symmetry detection

[SvKK*11]

[KHS10]

[PMW*08]

- Co-segmentation, symmetry analysis, and classification provide part labels and/or correspondences among shape parts
- Corresponding parts *likely* possess the same **functionality**
- There is some **relation** between **labels** and certain types of **functionality**, e.g., *chair seat* versus *sitting*
- Can constitute a **preliminary analysis** of functionality

- Difficult to infer the true **functional similarity**
- Analysis based only on geometry and structural similarity
- The functionality is not directly named or categorized

Learning generative models of 3D structures

[FRS*12]

- Synthesis performed based on geometric and/or structural similarity of the shapes
- Synthesized shapes **resemble** exemplars in the training data
- Functionality preservation is **not** enforced nor guaranteed

• Difference between "geometric appearance" and "functionality"

Challenges in functionality analysis

Hard to handle large structural variations

Handcart

Table

Challenges in functionality analysis

- Hard to handle large structural variations
- Hard to establish the connection between structure and functionality

Modern chair by Valerie Everett

Functionality-aware processing

Shape analysis can benefit from functionality

- Incorporate a model of shape functionality to analyze and process 3D objects and scenes
- Why?
 - Several applications motivate this goal...

Functionality-aware applications

- Object and scene retrieval
- Scene synthesis
- Modeling and editing

Scene retrieval [SCH*14]

Object-in-scene retrieval [HZvK*15]

Functionality-aware applications

- Object and scene retrieval
- Scene synthesis
- Modeling and editing

Human interaction synthesis [SCH*16]

3D scene synthesis [FSL*15]

Functionality-aware applications

- Object and scene retrieval
- Scene synthesis
- Modeling and editing

Object hybrid [HvKW*16]

Object modeling [ZLDM16]

Functionality-aware applications

- Computer graphics is highly related to the virtual prototyping and mass customization revolution
- In **prototyping** and **customization**, an understanding of functionality is essential!
- A fundamental problem
- Still much to be done...

Functionality analysis in computer vision and robotics

banjo

play

Input RGB-D

Grasp detection

Scoop detection

Tool Affordance Detection [MTFA15]

(a) task (b) solution Transferring Objects [WLY17]

hand truck

push

Knowledge Base [ZFFF14]

GRAPH A 2020 What is this course about?

- The goal of this course
 - To provide a comprehensive survey of functionality analysis in computer graphics and related areas such as computer vision
- Audience
 - **Researchers** in graphics/vision
- Criteria
 - General **definition** of functionality

Research questions

- How to **represent** functionality?
- How to derive a functionality **model** from such representations?
- How to incorporate functionality models into shape analysis and modeling?
- How to **learn** such models?
- How to do all of this **efficiently**?

```
• ...
```


- In this course, we will provide a sampler of different **solutions** to these **questions** as given by existing work
- For various problem domains and targeting diverse applications

- Our definition of functionality (Oliver)
- Classification of prior works (Ruizhen + Manolis)
- Functionality-aware applications + future directions (Manolis)

Definition of functionality and classification criteria

Definition of functionality

- Functionality: use or purpose of an object
- "Function is the action for which a person or thing is specially fitted or used, or for which a thing exists (purpose)" [Merriam-Webster]
- "Functionality is the application of an object in a specific context for the accomplishment of a particular purpose" [BB95]

Our definition of functionality

Goals:

- Constructive definition of functionality
- Serve as a **classification guide** for existing work
- Define the functionality of an **entity**

We follow our definition proposed in the following paper:

 Ruizhen Hu, Manolis Savva, and Oliver van Kaick, "Functionality Representations and Applications for Shape Analysis", Computer Graphics Forum (Eurographics State-of-the-art report), vol. 37, n. 4, pp. 603-624, 2018.

Atomic interaction:

<Functional entity, relation, interacting entity>

Atomic interaction:

<Functional entity, relation, interacting entity>

Components of atomic interactions

- Type of **entity**
- Level of **entity**
- Type of **relation**
- Representation of the **relation**

- Static entity
- Dynamic entity
- Human(-oid) agent

- Static entity
- Dynamic entity
- Human(-oid) agent

- Static entity
- Dynamic entity
- Human(-oid) agent

- Static entity
- Dynamic entity

Human(-oid) agent

- Atemporal
- Time-varying

- Atemporal
- Time-varying

- ICON descriptor [HZvK*15]

- Atemporal
- Time-varying

- Interaction landscapes [PKH*17]

- Spatial arrangement
- Boundary representation
- Dense volume feature
- Gestalt and symmetry grouping
- Mechanical relations
- Humanoid actions

- Spatial arrangement
- Boundary representation
- Dense volume feature
- Gestalt and symmetry grouping
- Mechanical relations
- Humanoid actions

- Relative position
- Co-occurrence
- Gravitational support
- Attachment
- Enclosure
- RAID descriptor [GMW16]

- Spatial arrangement
- Boundary representation
- Dense volume feature
- Gestalt and symmetry grouping
- Mechanical relations
- Humanoid actions

Intersection bisector surface (IBS) [ZWK14]
Interaction regions (IR) [HZvK*15]

- Spatial arrangement
- Boundary representation
- Dense volume feature
- Gestalt and symmetry grouping
- Mechanical relations
- Humanoid actions

- Interaction landscapes [PKH*17]

- Spatial arrangement
- Boundary representation
- Dense volume feature
- Gestalt and symmetry grouping
- Mechanical relations
- Humanoid actions

- Symmetry hierarchy [WXL*11]

- Spatial arrangement
- Boundary representation
- Dense volume feature
- Gestalt and symmetry grouping
- Mechanical relations
- Humanoid actions

- Force drivers, joints, and gears [LOMI11, KLY*14, MYY*10, XLX*16]

- Spatial arrangement
- Boundary representation
- Dense volume feature
- Gestalt and symmetry grouping
- Mechanical relations
- Humanoid actions

 Gazing, grasping, holding, pushing, pulling, and sitting [SCH*14, FSL*15, SCH*16, MLZ*16]

Functionality = Geometry + Interaction

Functionality = Geometry + Interaction Geometry-only (G) methods

Meta-representation of shape families [FavK*14]

Functionality = Geometry + Interaction Geometry + interaction (GI) methods

Interaction context (ICON) descriptor [HZvK*15]

Functionality = Geometry + Interaction Geometry + agent (GA) methods

Shape2pose: Humancentric shape analysis [KCGF14]

Additional classification criteria

- Model type: discriminative or generative
- **Approach:** supervised, unsupervised, or handcrafted
- Input data representation: RGB-D image, point cloud, mesh

SIGGRAPH ASIA 2020 Classification criteria

Works	Functional entity	Representation of geometry or interactions			Additional classification criteria		
		Component / interacting entity	Dynamicity	Relations	Input	Approach	Model type
Geometry-only (G)							
Xu et al. [XSF02]	scene	object-geo	stat	SA	mesh	handcrafted	generative
Merrell et al. [MSL*11]	scene	object-geo	stat	SA	mesh	handcrafted	generative
Yu et al. [YYT"11]	scene	object-geo	stat	SA	mesh	supervised	generative
Fisher et al. [FSH11]	scene	object-geo	stat	SA	mesh	handcrafted	discriminative
Fisher et al. [FRS*12]	multi-object	object-geo	stat	SA	mesh	supervised	generative
Zhao et al. [ZWK14]	multi-object	object-geo	stat	BR	pel	handcrafted	discriminative
Zhao et al. [ZHG*16]	multi-object	object-geo	stat	BR	mesh	supervised	generative
Zheng et al. [ZCOM13]	object	part-geo	stat	SG	mesh	handcrafted	generative
Mitra et al. [MYY*10]	object	part-geo	stat	SG	mesh	handcrafted	discriminative
Xu et al. [XLX*16]	object	part-geo	stat	SG	rgbd	handcrafted	discriminative
Fish et al. [FAvK*14]	object	part-geo	stat	SA	mesh	supervised	generative
Yumer et al. [YK14]	object	part-geo	stat	SA	mesh	supervised	generative
Pechuk et al. [PSR08]	part	part-geo	stat	SA	rgbd	supervised	discriminative
Gelfand et al. [GG04]	part	_	-	-	mesh	handcrafted	discriminative
Andries et al. [ADSV20]	object	-	stat	-	-	supervised	generative
Krs et al. [KMG*20]	object	part-geo	stat	-	-	unsupervised	generative

SIGGRAPH ASIA 2020 Classification criteria

Works	Functional entity	Representation of geometry or interactions			Additional classification criteria		
		Component / interacting entity	Dynamicity	Relations	Input	Approach	Model type
Geometry+interaction (GI)							
Hu et al. [HZvK*15]	object	stat-inter	stat	BR	pel	handcrafted	discriminative
Hu et al [HvKW*16]	object	stat-inter	stat	BR	pcl	supervised	discriminative
Pirk et al. [PKH*17]	object	dyn-inter	dyn	VF	mesh	handcrafted	discriminative
Myers et al. [MTEA15]	part	stat-inter	stat	SA	rgbd	supervised	discriminative
Kim et al. [KS14]	part	stat-inter	stat	SA	rgbd	supervised	discriminative
Laga et al. [LMS13]	part	stat-inter	stat	SA+SG	mesh	supervised	discriminative
Hu et al. [HLK*17]	part	stat-inter	dyn	SA+BR	pcl	supervised	discriminative
Xiang et al. [XQM [*] 20]	part	stat-inter	dyn	SA	mesh	supervised	discriminative
Hu et al. [HYZ*18]	object	stat-inter	stat	SA+BR	vol	supervised	generative
Yi et al. [YHL*18]	part	stat-inter	dyn	SA	pel	supervised	discriminative
Wang et al. [WZS*19]	part	stat-inter	dyn	SA	pel	supervised	discriminative
Yan et al. [YHY*19]	part	stat-inter	dyn	SA	pel	supervised	discriminative
Li et al. [LWY*20]	part	stat-inter	dyn	SA	pcl	supervised	discriminative
Kokic et al. [KSHK17]	part	stat-inter	dyn	SA	pel	supervised	generative
Li et al. [LSK20]	part	stat-inter	dyn	SA	pel	supervised	generative

SIGGRAPH ASIA 2020 Classification criteria

Works	Functional entity	Representation of geometry or interactions			Additional classification criteria		
		Component / interacting entity	Dynamicity	Relations	Input	Approach	Model type
Geometry+agent (GA)							
Grabner et al. [GGVG11]	scene	agent-inter	stat	HA	mesh	supervised	generative
Savva et al. [SCH*14]	scene	agent-inter	stat	SA+HA	mesh	supervised	discriminative
Zhu et al. [ZJZ*16]	scene	agent-inter	stat	SA	mesh	supervised	generative
Jiang et al. [JKS13]	multi-object	agent-inter	stat	SA	rgbd	supervised	discriminative
Wang et al. [WLY17]	multi-object	agent-inter	stat	SA+HA	mesh	supervised	discriminative
Fisher et al. [FSL*15]	multi-object	agent-inter	stat	SA+HA	mesh	supervised	generative
Savva et al. [SCH*16]	multi-object	agent-inter	stat	SA+HA	mesh	supervised	generative
Ma et al. [MLZ" 16]	multi-object	agent-inter	dyn	SA+HA	mesh	unsupervised	generative
Zheng et al. [ZLDM16]	object	agent-inter	stat	SA	mesh	handcrafted	generative
Kim et al. [KCGF14]	object	agent-inter	stat	SA	mesh	supervised	generative
Bar-Aviv & Rivlin [BAR06]	object	agent-inter	stat	SA+HA	mesh	handcrafted	discriminative
Zhu et al. [ZZCZ15]	object	agent-inter	dyn	SA+HA	rgbd	supervised	discriminative
Zhao et al. [ZCK17]	object	agent-inter	dyn	SA+HA	mesh	handcrafted	discriminative
Lee et al. [LCL06]	object	agent-inter	dyn	SA	mesh	supervised	generative
Li et al. [LLK*19]	scene	agent-inter	stat	SA+HA	rgbd	supervised	generative
Zhang et al. [ZHN*20]	scene	agent-inter	stat	SA+HA	rgbd	supervised	generative
Mao et al. [MZX*19]	object	agent-inter	stat	SA	mesh	supervised	generative
Fu et al. [FFY*20]	scene	agent-inter	stat	SA+HA	mesh	supervised	discriminative
Monsepart et al. [MGC*19]	scene	agent-inter	stat	SA	rgbd	supervised	generative
Ruiz et al. [RMC19]	scene	agent-inter	stat	SA+BR	mesh	supervised	generative
Starke et al. [SZKS19]	object	agent-inter	dyn	SA	vol	supervised	generative
		- · ·				-	

- Use **definition of functionality** and **additional criteria** to classify and discuss **previous work**
- Definition provides three groups of functionality methods
- Classification also useful when discussing unexplored areas
 of research and future work

Next: discussion of methods

Functionality = Geometry + Interaction

G methods

GI methods

GA methods

Geometry-only (G) methods

Geometry-only (G) methods

Meta-representation of shape families [FavK*14]

Geometry-only methods

- Derive functionality only from geometry and structure
- Geometry and structure of **parts**, **objects**, **or scenes**
- Interactions with other entities are not considered
- Relations considered in the analysis are **static**

Geometry-only methods

Discussion follows **level of the entity**:

- Scene-level functionality
- Object-level functionality
- Part-level functionality

Geometry-only methods

Discussion follows **level of the entity**:

- Scene-level functionality
- Object-level functionality
- Part-level functionality

- Describe the **functionality of a scene**
- Specific **object arrangements** enable certain functionalities
- Consider **relations between objects** in the scene
- Spatial arrangements or boundary representations

Constrained placement [XSF02] Interior design guidelines [MSL*11] "Make it home" [YYT*11]

- Automatically place objects to generate a scene
- Using placement constraints and rules, pseudo-physics, interior design guidelines, and ergonomic factors

- "Example-based synthesis of 3D object arrangements" [FRS*12]
- Synthesize scenes with a learned object co-occurrence model

- Content-based comparison for scene retrieval
- Considering co-occurrence of objects

Scene-level functionality

- Represent the **spatial boundary** between objects
- Applicable to scene comparison and template-based synthesis

How to make variations of complex relationship?

Template construction: IBS

Template construction: cells and features

Shape Coverage Feature (SCF)

Novel Object Fitting

Novel Object Fitting: initial matching

Novel Object Fitting: refinement

Scene hierarchy

Combine with other scene synthesis system

M. Fisher, D. Ritchie, M. Savva, T. Funkhouser, and P. Hanrahan, "**Example-based Synthesis of 3D Object Arrangements**" *SIGGRAPH ASIA2012*

Geometry-only methods

Discussion follows **level of the entity**:

- Scene-level functionality
- Object-level functionality
- Part-level functionality

Object-level functionality

- Examine the **geometry** and **structure** of the object
- Structure: represent a shape as a graph of parts
- Edges represent **relations** between connected parts

Object-level functionality

- Symmetric functional arrangements (sFARRs) [ZCOM13]
- Handcrafted rules to detect special groupings of parts
- Exchange sFARRs between shapes to generate plausible shapes

- Illustrate the **functioning** of **mechanical assemblies** [MYY*10]
- Assemblies composed of mechanical components such as gears
- Infer motion with handcrafted rules based on symmetry relations

Object-level functionality

- Recover functioning of mechanical assemblies from images [XLX*16]
- Analysis of the **geometry of linked parts** in **multiple views**

- Learn a part configuration model from a set of shapes of same family
- Evaluate validity of a shape based on how well it fits the model

Are these shapes "valid"?

Learn validity from a collection

How to characterize "validity"?

Relations per shape

Characterize validity with the relations

- Validity is useful in several applications:
 - Exploration
 - Guided modeling
 - Coupled editing

General editing approach

General editing approach

General editing approach

Geometry-only methods

Discussion follows **level of the entity**:

- Scene-level functionality
- Object-level functionality
- Part-level functionality

- "Shape segmentation using local slippage analysis" [GG04]
- Discover **slippable motions** of a shape
- Reveal **regions of shapes** that are **kinematic surfaces** with same motion

- Functionality models derived from **geometry** and **structure**
- Models often capture functional properties of a shape
- But not all discovered properties relate to functionality
- Handcrafted models often include only few manuallydefined functionality types

Geometry + Interaction

Functionality = Geometry + Interaction

Atomic interaction:

<Functional entity, relation, interacting entity>

• The functionality of an entity is well reflected by the way how the entity is used when performing its functionality

• Capture multiple, different interactions

Insensitivity to object geometry and count

• Group interactions in a meaningful manner

Structural organization

		Representation of geometry or interactions			Additional classification criteria		
Works	Functional entity	Component / interacting entity	Dynamicity	Relations	Input	Approach	Model type
Geometry+interaction (GI)							
Hu et al. [HZvK*15]	object	stat-inter	stat	BR	pel	handcrafted	discriminative
Hu et al [HvKW*16]	object	stat-inter	stat	BR	pcl	supervised	discriminative
Pirk et al. [PKH*17]	object	dyn-inter	dyn	VF	mesh	handcrafted	discriminative
Myers et al. [MTFA15]	part	stat-inter	stat	SA	rgbd	supervised	discriminative
Kim et al. [KS14]	part	stat-inter	stat	SA	rgbd	supervised	discriminative
Laga et al. [LMS13]	part	stat-inter	stat	SA+SG	mesh	supervised	discriminative
Hu et al. [HLK*17]	part	stat-inter	dyn	SA+BR	pcl	supervised	discriminative
Xiang et al. [XQM [*] 20]	part	stat-inter	dyn	SA	mesh	supervised	discriminative
Hu et al. [HYZ*18]	object	stat-inter	stat	SA+BR	vol	supervised	generative
Yi et al. [YHL*18]	part	stat-inter	dyn	SA	pel	supervised	discriminative
Wang et al. [WZS*19]	part	stat-inter	dyn	SA	pel	supervised	discriminative
Yan et al. [YHY*19]	part	stat-inter	dyn	SA	pcl	supervised	discriminative
Li et al. [LWY*20]	part	stat-inter	dyn	SA	pcl	supervised	discriminative
Kokic et al. [KSHK17]	part	stat-inter	dyn	SA	pel	supervised	generative
Li et al. [LSK20]	part	stat-inter	dyn	SA	pel	supervised	generative

- Handcrafted descriptors
 - Atemporal interaction
 - Time-varying interaction
- Supervised learning
 - Object-level functionality
 - Discriminative recognition
 - Generative modeling
 - Part-level functionality
 - Atemporal interaction
 - Time-varying interaction

Handcrafted descriptors

- Atemporal interaction
- Time-varying interaction
- Supervised learning
 - Object-level functionality
 - Discriminative recognition
 - Generative modeling
 - Part-level functionality
 - Atemporal interaction
 - Time-varying interaction

Handcrafted descriptors

- Atemporal interaction
- Time-varying interaction
- Supervised learning
 - Object-level functionality
 - Discriminative recognition
 - Generative modeling
 - Part-level functionality
 - Atemporal interaction
 - Time-varying interaction

Atemporal interaction representation

Interaction Bisector Surface [ZWK14]

Interaction Region [HZvK*15]

Atemporal interaction representation

Atemporal interaction representation

Atemporal interaction representation

Atemporal interaction representation

SIGGRAPH ASIA 2020 VIRTUAL

Atemporal multi-interaction organization

Interaction context (ICON) [HZvK*15]

Atemporal multi-interaction organization

Handcrafted descriptors

- Atemporal interaction
- Time-varying interaction
- Supervised learning
 - Object-level functionality
 - Discriminative recognition
 - Generative modeling
 - Part-level functionality
 - Atemporal interaction
 - Time-varying interaction

Time-varying interaction representation

Motion particles

Sensor regions

Interaction Landscapes descriptor [PKH*17]

Application: interactionbased retrieval

Functionality recognition

- Handcrafted descriptors
 - Atemporal interaction
 - Time-varying interaction

Supervised learning

- Object-level functionality
 - Discriminative recognition
 - Generative modeling
- Part-level functionality
 - Atemporal interaction
 - Time-varying interaction

- Handcrafted descriptors
 - Atemporal interaction
 - Time-varying interaction
- Supervised learning
 - Object-level functionality
 - Discriminative recognition
 - Generative modeling
 - Part-level functionality
 - Atemporal interaction
 - Time-varying interaction

Application: function enhancement

Generative model

Object usage hallucination

Functionality recognition and context generation

- Map given object to scenes showing suitable functionalities
 - Learn a functional similarity measure between **objects** and **scenes**

• Achieve into two steps: context generation and segmentation

Geometry + interaction methods

- Handcrafted descriptors
 - Atemporal interaction
 - Time-varying interaction

Supervised learning

- Object-level functionality
 - Discriminative recognition
 - Generative modeling

Part-level functionality

- Atemporal interaction
- Time-varying interaction

Segmentation and semantic labeling [LMS13]

Semantic labeling with object affordance [KS14]

Label: liftable

Part-level grasping affordance prediction (atemporal)

20

15 20 25

Affordance detection for task-specific grasping [KSHK17]

Learning to grasp 3d objects [LSK20]

20

20 25

Part-level mobility prediction (Time-varying interaction)

Static shape

Dynamic motion

Snapshot descriptor

SIGGRAPH ASIA 2020 Snapshot-to-unit distance

Nearest neighbor Retrieval

Part-level mobility prediction (Time-varying interaction)

Paired input

Deep part induction from articulated object pairs $[\ensuremath{\mathsf{YHL}}*18]$

Part-level mobility prediction (Time-varying interaction)

single un-segmented partial

Direct mobility prediction

Mobility-Net: mobility prediction

RPM-Net: recurrent prediction of motion and parts from point cloud [YHY*19]

Mobility-Net results

RPM-Net: recurrent prediction of motion and parts from point cloud [YHY*19]

Mobility-Net results

RPM-Net: recurrent prediction of motion and parts from point cloud [YHY*19]

Part-level mobility prediction (Time-varying interaction)

Shape2Motion: joint analysis of motion parts and attributes from 3D shapes [WZS*19]

Part-level mobility prediction (Time-varying interaction)

Category-level articulated object pose estimation [LWY*20]

Geometry + interaction methods

Works	Functional entity	Representation of geometry or interactions			Additional classification criteria			
		Component / interacting entity	Dynamicity	Relations	Input	Approach	Model type	
Geometry+interaction (GI)								
Hu et al. [HZvK*15]	object	stat-inter	stat	BR	pel	handcrafted	discriminative	
Hu et al [HvKW*16]	object	stat-inter	stat	BR	pcl	supervised	discriminative	
Pirk et al. [PKH*17]	object	dyn-inter	dyn	VF	mesh	handcrafted	discriminative	
Myers et al. [MTFA15]	part	stat-inter	stat	SA	rgbd	supervised	discriminative	
Kim et al. [KS14]	part	stat-inter	stat	SA	rgbd	supervised	discriminative	
Laga et al. [LMS13]	part	stat-inter	stat	SA+SG	mesh	supervised	discriminative	
Hu et al. [HLK*17]	part	stat-inter	dyn	SA+BR	pcl	supervised	discriminative	
Xiang et al. [XQM*20]	part	stat-inter	dyn	SA	mesh	supervised	discriminative	
Hu et al. [HYZ"18]	object	stat-inter	stat	SA+BR	vol	supervised	generative	
Yi et al. [YHL*18]	part	stat-inter	dyn	SA	pel	supervised	discriminative	
Wang et al. [WZS*19]	part	stat-inter	dyn	SA	pel	supervised	discriminative	
Yan et al. [YHY*19]	part	stat-inter	dyn	SA	pel	supervised	discriminative	
Li et al. [LWY*20]	part	stat-inter	dyn	SA	pel	supervised	discriminative	
Kokic et al. [KSHK17]	part	stat-inter	dyn	SA	pel	supervised	generative	
Li et al. [LSK20]	part	stat-inter	dyn	SA	pel	supervised	generative	

- Focus on **object** and **part** level functionalities
- Start with **handcrafted** functionality descriptors
- Recent learning-based methods for prediction and generation
- Both **atemporal** and **time-varying** interactions

Geometry + Agent

Geometry + agent methods

- Interaction with (humanoid) agent
- Can be special case of geometry + interaction methods
- Critical for human-centric functionality
- Recent interest in applications for fabrication, VR/AR

SIGGRAPH ASIA 2020 Much recent work

	Representation of geometry or interactions			Additional classification criteria				
Works	Functional entity	Component / interacting entity	Dynamicity	Relations	Input	Approach	Model type	
Geometry+agent (GA)								_
Grabner et al. [GGVG11]	scene	agent-inter	stat	HA	mesh	supervised	generative	
Savva et al. [SCH*14]	scene	agent-inter	stat	SA+HA	mesh	supervised	discriminative	
Zhu et al. [ZJZ*16]	scene	agent-inter	stat	SA	mesh	supervised	generative	
Jiang et al. [JKS13]	multi-object	agent-inter	stat	SA	rgbd	supervised	discriminative	
Wang et al. [WLY17]	multi-object	agent-inter	stat	SA+HA	mesh	supervised	discriminative	
Fisher et al. [FSL*15]	multi-object	agent-inter	stat	SA+HA	mesh	supervised	generative	
Savva et al. [SCH*16]	multi-object	agent-inter	stat	SA+HA	mesh	supervised	generative	
Ma et al. [MLZ" 16]	multi-object	agent-inter	dyn	SA+HA	mesh	unsupervised	generative	
Zheng et al. [ZLDM16]	object	agent-inter	stat	SA	mesh	handcrafted	generative	
Kim et al. [KCGF14]	object	agent-inter	stat	SA	mesh	supervised	generative	
Bar-Aviv & Rivlin [BAR06]	object	agent-inter	stat	SA+HA	mesh	handcrafted	discriminative	
Zhu et al. [ZZCZ15]	object	agent-inter	dyn	SA+HA	rgbd	supervised	discriminative	
Zhao et al. [ZCK17]	object	agent-inter	dyn	SA+HA	mesh	handcrafted	discriminative	
Lee et al. [LCL06]	object	agent-inter	dyn	SA	mesh	supervised	generative	
Li et al. [LLK" 19]	scene	agent-inter	stat	SA+HA	rgbd	supervised	generative	
Zhang et al. [ZHN*20]	scene	agent-inter	stat	SA+HA	rgbd	supervised	generative	
Mao et al. [MZX*19]	object	agent-inter	stat	SA	mesh	supervised	generative	
Fu et al. [FFY*20]	scene	agent-inter	stat	SA+HA	mesh	supervised	discriminative	
Monsepart et al. [MGC" 19]	scene	agent-inter	stat	SA	rgbd	supervised	generative	
Ruiz et al. [RMC19]	scene	agent-inter	stat	SA+BR	mesh	supervised	generative	
Starke et al. [SZKS19]	object	agent-inter	dyn	SA	vol	supervised	generative	
Akizuki et al. [AA18]	object	agent-inter	dyn	SA+HA	rgbd	supervised	discriminative	.91

- Representation focus: agent-centric or functional entity-centric
- Functional entity level
- Relation type: time-varying or not
- Generation: $agent(s) \leftarrow \rightarrow scene$
- Discrimination: scene quality metrics and object understanding

SIGGRAPH ASIA 2020 Axes of variation

		netry or interac	stry or interactions		Additional classification criteria		
Works	Functional entity	Component / interacting entity	Dynamicity	Relations	Input	Approach	Model type
Geometry+agent (GA)							
Grabner et al. [GGVG11]	scene	agent-inter	stat	HA	mesh	supervised	generative
Savva et al. [SCH*14]	scene	agent-inter	stat	SA+HA	mesh	supervised	discriminative
Zhu et al. [ZJZ*16]	scene	agent-inter	stat	SA	mesh	supervised	generative
Jiang et al. [JKS13]	multi-object	agent-inter	stat	SA	rgbd	supervised	discriminative
Wang et al. [WLY17]	multi-object	agent-inter	stat	SA+HA	mesh	supervised	discriminative
Fisher et al. [FSL*15]	multi-object	agent-inter	stat	SA+HA	mesh	supervised	generative
Savva et al. [SCH*16]	multi-object	agent-inter	stat	SA+HA	mesh	supervised	generative
Ma et al. [MLZ*16]	multi-object	agent-inter	dyn	SA+HA	mesh	unsupervised	generative
Zheng et al. [ZLDM16]	object	agent-inter	stat	SA	mesh	handcrafted	generative
Kim et al. [KCGF14]	object	agent-inter	stat	SA	mesh	supervised	generative
Bar-Aviv & Rivlin [BAR06]	object	agent-inter	stat	SA+HA	mesh	handcrafted	discriminative
Zhu et al. [ZZCZ15]	object	agent-inter	dyn	SA+HA	rgbd	supervised	discriminative
Zhao et al. [ZCK17]	object	agent-inter	dyn	SA+HA	mesh	handcrafted	discriminative
Lee et al. [LCL06]	object	agent-inter	dyn	SA	mesh	supervised	generative
Li et al. [LLK*19]	scene	agent-inter	stat	SA+HA	rgbd	supervised	generative
Zhang et al. [ZHN*20]	scene	agent-inter	stat	SA+HA	rgbd	supervised	generative
Mao et al. [MZX*19]	object	agent-inter	stat	SA	mesh	supervised	generative
Fu et al. [FFY*20]	scene	agent-inter	stat	SA+HA	mesh	supervised	discriminative
Monszpart et al. [MGC*19]	scene	agent-inter	stat	SA	rgbd	supervised	generative
Ruiz et al. [RMC19]	scene	agent-inter	stat	SA+BR	mesh	supervised	generative
Starke et al. [SZKS19]	object	agent-inter	dyn	SA	vol	supervised	generative
Akizuki et al. [AA18]	object	agent-inter	dyn	SA+HA	rgbd	supervised	discriminative

Geometry-centric

Agent-centric

Geometry-centric representations

Sittability prediction [GGVG11]

Action maps [SCH*14]

Object interactions [FSL*15]

Agent-centric representations

Shape2pose [KCGF14] PiGraphs [SCH*16]

Character-object IBS [ZCK17]

Functional entity level

Scene

Multi-object

Object

Multi-part

Part

Functional entity level: scene

Sittability prediction [GGVG11]

Action maps [SCH*14]

Functional entity level: multi-object

Object interactions [FSL*15] PiGraphs [SCH*16]

Functional entity level: object

Shape2pose [KCGF14] Character-object IBS [ZCK17]

Character interactions [SZKS19]

Time-varying

[SCH*16]

[SZKS19]

Relation type: time-varying

Motion patches [LCL06]

Character interactions [SZKS19]

SIGGRAPH ASIA 2020 Generation: scene \rightarrow agent(s)

Generating 3D people [ZHN*20]

Putting humans in a scene [LLK*19]

ASIA 2020 Generation: agent \rightarrow scene

iMapper [MGC*19]

Discrimination: scene quality metrics

Human-centric scene assessment metrics [FFY*20]

Discrimination: object understanding

Future directions for geometry + agent methods

- Finer scale actions
- Social actions and hierarchical actions
- Time-varying relations in time-varying scenes
- Connections with robotics, computer vision, embodied AI

Summary: geometry + agent methods

Virtual and augmented reality

[image source: https://commons.wikimedia.org/wiki/File:Augmented-reality.jpg]

Fabrication

[image source: https://commons.wikimedia.org/wiki/File:GENERATICcollection-by-Emmanuel_Touraine-for-VENTURY-027.jpg]

Applications

SIGGRAPH ASIA 2020 Application domains

- Classification, segmentation, and labeling
- Retrieval
- Synthesis
- Modeling and editing
- Visualization and fabrication
- Robotics and AI

Classification, segmentation, labeling

Part classification

Base Top

Object classification

Scene classification

[LMS13]

[FRS*12]

[SCH*14]

Part retrieval

Object-in-scene retrieval

Scene retrieval

3D scene synthesis

[FSL*15]

Human interaction synthesis

[SCH*16]

Modeling and editing

Object modeling

Scene editing

[MSL*11]

Visualization and fabrication

Assembly visualization

Fabrication

[LOMI11]

Robotics and AI

Affordance detection for grasping

SAPIEN: interactive 3D simulation

[XQM*20]

A 2020 Applications: summary

- Many application domains
- Functionality critical for both analysis and synthesis tasks
- Despite much recent work, open research questions abound

Future Directions

Different levels of functional entities

(a) Scene

(b) Object-union

(c) Object

(d) Part-union

(e) Part

Multi-level treatment?

Hierarchical representation?

Interaction representation

More informative representation?

Static vs. dynamic

[WXL*11]

[FSL*15]

Handcrafted vs. data-driven

prior knowledge

Handcrafted vs. data-driven

Large-scale 3D functionality dataset

[Image source: Icons made by Pause08 www.flaticon.com]

Machine learning advances

[Image source: Icons made by Becris www.flaticon.com]

Beyond geometry

- Materials for physical reasoning
- Acoustic properties for sound-based functions

- Functionality-guided scene synthesis
- Functionality-driven AR/VR
- Functionality-driven interactive 3D simulation

[MGC*19]

[image source: https://commons.wikimedia.org/wiki/File:Augmented-reality.jpg

[XQM*20]

Full understanding of 3D shape

Same functionality

SIGGRAPH ASIA 2020 "Grand challenge"

- Model covering a range of functionality aspects
 - Human-object
 - Object-object
 - Dynamic settings
 - Physical properties
 - ...
- Use the model for analysis and synthesis
- E.g., realistic shape and scene synthesis

Conclusion

- Comprehensive survey of work on functionality
- Definition of functionality: geometry + interaction
- Three classes of methods: geometry-only, geometry + interaction, geometry + agent
- Factorization into intrinsic and extrinsic properties

- Functionality definition is not complete or perfect
- What are other ways of encoding functionality?
- What are the fundamental properties of parts, objects, scenes?
- Key question: form from function or function from form?

Thank you!

- Reasoning about functionality is ubiquitous
- Emerging connections between applications in graphics, vision, robotics, and AI
- Check out the course website for more information and for our contact details!

https://learn3dfunc.github.io/