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Figure 1: 3D objects and scenes exhibit a variety of functionalities. The three examples here (coat rack, mug, and nightstand drawer) show
the challenge of learning relations between functional parts (in orange) and other entities.

Abstract

A central goal of computer graphics is to provide tools for design-
ing and simulating real or imagined artifacts. An understanding of
functionality is important in enabling such modeling tools. Given
that the majority of man-made artifacts are designed to serve a cer-
tain function, the functionality of objects is often reflected by their
geometry, the way that they are organized in an environment, and
their interaction with other objects or agents. Thus, in recent years,
a variety of methods in shape analysis have been developed to ex-
tract functional information about objects and scenes from these
different types of cues.

In this course, we discuss recent developments involving function-
ality analysis of 3D shapes and scenes. We provide a summary of
the state-of-the-art in this area, including a discussion of key ideas
and an organized review of the relevant literatures. More specif-
ically, we first present a general definition of functionality from
which we derive criteria for classifying the body of prior work.
This definition facilitates a comparative view of methods for func-
tionality analysis. Moreover, we connect these methods to recent
advances in deep learning, computer vision and robotics. Finally,
we discuss a variety of application areas, and outline current chal-
lenges and directions for future work.

Keywords:  Shape analysis, functionality analysis, geometric
modeling, 3D representations, deep learning

1 Introduction

Functionality-aware processing is relatively new in graphics. How-
ever, the number of papers published at graphics conferences ex-
plicitly addressing functionality is growing. Moreover, incorporat-
ing models of functionality in an effective manner is a fundamental
problem, important for applications such as fabrication and product
design, which benefit from an explicit understanding of the func-
tion or purpose of an object. Moreover, the representation of func-
tionality for 3D data has been of interest in related research fields
such as computer vision and robotics, particularly in recent work
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that has been increasingly using 3D representations obtained with
deep learning. We believe that a course on functionality analysis for
computer graphics and adjacent research fields will be valuable and
serve to delineate exciting directions for multi-disciplinary work
bridging these fields.

The goal of our course is to give the necessary background to re-
searchers wishing to enter this particular area of research by dis-
cussing the state-of-the-art works, organizing them in a structured
scheme, and pointing out connections and opportunities for future
work. In particular, we hope to motivate further work at the inter-
section of deep learning, computer graphics, and computer vision.

The course requires the audience to be familiar with basic concepts
of geometry, computer graphics, and geometric modeling in 3D.
Knowledge of machine learning is also helpful but not necessary.

2 Relation to previous courses

This course is related but complementary to a few earlier courses.
The SIGGRAPH Asia 2016 course on “Directions in Shape Analy-
sis towards Functionality” summarizes some of the earlier work in
computer graphics, mostly in computer graphics, and does not pro-
vide the organizational framework of this course to classify prior
work and connect it with other research areas. The SIGGRAPH
Asia 2017 course on “Modeling and Remodeling 3D Worlds” fo-
cuses on 3D shape and scene modeling, with functionality-assisted
modeling being one downstream application. The Eurographics
2018 tutorial on “Functionality Representations and Applications
for Shape Analysis” does not cover more recent work in learned 3D
representations for functionality, and does not address connections
to deep learning, computer vision, and robotics. The Eurographics
2019 tutorial on “Learning Generative Models of 3D Structures”
focuses on 3D shape and 3D scene generation, whereas we focus
on 3D functionality representations with generation being only one
of many other tasks such as analysis and 3D scene understanding.

3 Content of the course

 Introduction: introduction, description of what is covered in
the course, rationale and motivation for the course.



* Part 1: definition of functionality and organization of prior
work along several axes.

* Part 2: geometry-only functionality analysis, summary of
early work.

* Part 3: geometry + interaction—based functionality analysis,
connections with learned 3D representations.

* Part 4: geometry + agent—based functionality analysis, con-
nections with computer vision and robotics.

* Conclusion: summary of the state-of-the-art, and discussion
of future challenges and possible future work.

4 Course materials

The course consists of talks given by three speakers, aided by a
set of slides functioning as course notes. The complete slides are
available at https://learn3dfunc.github.io/.

To complement the slides, Table 1 provides a list of references cov-
ered in our discussion of existing work. The references are orga-
nized according to a set of criteria derived from our definition of
functionality [HSvK18]. The criteria and acronyms used in the ta-
ble are explained as follows.

5 Classification of relevant literature

In our definition [HSvK18], the functionality of an entity is revealed
by its geometry and a set of interactions between the entity in ques-
tion (which we call the functional entity) and interacting entities.
We classify existing methods based on the characteristics of the
components of this definition.

Works. The methods in the literature are divided into three cat-
egories, based on whether a method only analyzes the geome-
try of the functional entity (Geometry-only (G)), or also consid-
ers interactions of the functional entity with other entities (Geom-
etry+interaction (GI)), where we group the methods in which the
functional entity is a human(-oid) agent in a separate category (Ge-
ometry+agent (GA)).

Functional entity. The level of organization at which the functional
entity appears, which can be at the level of a part, object, multi-
object, or scene.

Component / interacting entity. Denotes either the component of
the geometry analyzed (part geometry or object geometry) or the
type of interaction considered (static, dynamic, or agent interac-
tion).

Dynamicity. The relation can be either static (staf) or dynamic
(dyn).

Relations. Denotes how the relation between the entities is repre-
sented, which can be one of: Spatial arrangement (SA), Boundary
representation (BR), Dense volume feature (VF), Gestalt and sym-
metry grouping (SG), Mechanical relations (MR), or Human(-oid)
actions (HA).

Input. Denotes the representation of the input data, which can be
one of: RGB-D image (rgbd), point cloud (pcl), polygonal mesh
(mesh), or voxelized volume (voxels).

Approach. Denotes the nature of the approach used to analyze
the functionality of the entities, which can be one of: supervised
learning, unsupervised learning, or an approach handcrafted to the
problem at hand.

Model type. Denotes the type of the model constructed, which can
be either generative or discriminative.
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Representation of geometry or interactions

Additional classification criteria

Works Functional entity ~ Component / interacting entity ~ Dynamicity  Relations  Input Approach Model type
Geometry-only (G)

Xu et al. [XSF02] scene object-geo stat SA mesh handcrafted generative
Merrell et al. [MSL*11] scene object-geo stat SA mesh handcrafted generative
Yuetal. [YYT*11] scene object-geo stat SA mesh supervised generative
Fisher et al. [FSH11] scene object-geo stat SA mesh handcrafted  discriminative
Fisher et al. [FRS"12] multi-object object-geo stat SA mesh supervised generative
Zhao et al. [ZWK14] multi-object object-geo stat BR pcl handcrafted  discriminative
Zhao et al. [ZHG*16] multi-object object-geo stat BR mesh supervised generative
Zheng et al. [ZCOM13] object part-geo stat SG mesh handcrafted generative
Mitra et al. [MYY*10] object part-geo stat SG mesh handcrafted  discriminative
Xu et al. [XLX"16] object part-geo stat SG rgbd handcrafted  discriminative
Fish et al. [FAVK* 14] object part-geo stat SA mesh supervised generative
Yumer et al. [YK14] object part-geo stat SA mesh supervised generative
Pechuk et al. [PSRO8] part part-geo stat SA rgbd supervised discriminative
Gelfand et al. [GG04] part - - - mesh handcrafted  discriminative
Andries et al. [ADSV20] object - stat - voxels supervised generative
Geometry-+interaction (GI)

Hu et al. [HZvK*15] object stat-inter stat BR pcl handcrafted  discriminative
Hu et al [HVKW™16] object stat-inter stat BR pcl supervised discriminative
Pirk et al. [PKH*17] object dyn-inter dyn VF mesh handcrafted  discriminative
Myers et al. [MTFA15] part stat-inter stat SA rgbd supervised discriminative
Kim et al. [KS14] part stat-inter stat SA rgbd supervised discriminative
Laga et al. [LMS13] part stat-inter stat SA+SG  mesh supervised discriminative
Hu et al. [HLK*17] part stat-inter dyn SA+BR pel supervised  discriminative
Xiang et al. [XQM™*20] part stat-inter dyn SA mesh supervised discriminative
Hu et al. [HYZ" 18] object stat-inter stat SA+BR vol supervised generative
Yietal. [YHL*18] part stat-inter dyn SA pcl supervised discriminative
Wang et al.[WZS*19] part stat-inter dyn SA pcl supervised discriminative
Yan et al. [YHY*19] part stat-inter dyn SA pcl supervised discriminative
Lietal. [LWY*20] part stat-inter dyn SA pel supervised discriminative
Kokic et al. [KSHK17] part stat-inter dyn SA pcl supervised generative
Li et al. [LSK20] part stat-inter dyn SA pcl supervised generative
Krs et al. [KMG™20] object stat-inter stat BR mesh supervised generative
Geometry+agent (GA)

Grabner et al. [GGVG11] scene agent-inter stat HA mesh supervised generative
Savva et al. [SCH*14] scene agent-inter stat SA+HA  mesh supervised discriminative
Zhu et al. [ZJZ"16] scene agent-inter stat SA mesh supervised generative
Jiang et al. [JKS13] multi-object agent-inter stat SA rgbd supervised discriminative
Wang et al. [WLY17] multi-object agent-inter stat SA+HA  mesh supervised discriminative
Fisher et al. [FSL*15] multi-object agent-inter stat SA+HA  mesh supervised generative
Savva et al. [SCH*16] multi-object agent-inter stat SA+HA mesh supervised generative
Ma et al. [MLZ*16] multi-object agent-inter dyn SA+HA  mesh  unsupervised generative
Zheng et al. [ZLDM16] object agent-inter stat SA mesh handcrafted generative
Kim et al. [KCGF14] object agent-inter stat SA mesh supervised generative
Bar-Aviv & Rivlin [BARO06] object agent-inter stat SA+HA  mesh handcrafted  discriminative
Zhu et al. [ZZCZ15] object agent-inter dyn SA+HA  rgbd supervised discriminative
Zhao et al. [ZCK17] object agent-inter dyn SA+HA  mesh handcrafted  discriminative
Lee et al. [LCL06] object agent-inter dyn SA mesh supervised generative
Lietal [LLK*19] scene agent-inter stat SA+HA rgbd supervised generative
Zhang et al. [ZHN*20] scene agent-inter stat SA+HA rgbd supervised generative
Mao et al. [MZX"19] object agent-inter stat SA mesh supervised generative
Fu et al. [FFY*20] scene agent-inter stat SA+HA  mesh supervised discriminative
Monszpart et al. [MGC*19] scene agent-inter stat SA rgbd supervised generative
Ruiz et al. [RMC19] scene agent-inter stat SA+BR  mesh supervised generative
Starke et al. [SZKS19] object agent-inter dyn SA vol supervised generative
Akizuki et al. [AA18] object agent-inter dyn SA+HA rgbd supervised discriminative

Table 1: Prior work classified according to our definition of functionality [HSvKIS].
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